16 research outputs found

    Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications

    Get PDF
    A compact band-notched UWB (Ultra-Wide Band) antenna with integrated Bluetooth is developed for personal wireless communication and UWB applications. The antenna operates at the UWB frequency band (3.1-10.6 GHz) as well as Bluetooth (2.4-2.484 GHz), with band-notch characteristics at the Wireless Local Area Network (WLAN) frequency band (5-6 GHz). A new technique of integrating Bluetooth within a UWB band-notched antenna is developed and analyzed. The UWB frequency band is realized by utilizing a conventional cylindrical radiating patch and a modified partial ground plane. The Bluetooth band is integrated using a miniaturized resonator with the addition of capacitors. Further, to mitigate the interference of the WLAN frequency band within the UWB spectrum, a conventional slot resonator is integrated within the radiator to achieve the task. The antenna is designed and fabricated, and its response in each case is provided. Moreover, the antenna exhibits a good radiation pattern with a stable gain in the passband. The present antenna is also compared to state-of-the-art structures proposed in the literature. The miniaturized dimensions (30 x 31 mm 2 ) of the antenna make it an excellent candidate for UWB and personal wireless communication applications.The publication of this article was funded by the Qatar National Library. Mirjavadi also appreciates the help from the Fidar Project Qaem Company (FPQ)

    EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach

    Get PDF
    Much attention has been paid to the recognition of human emotions with the help of electroencephalogram (EEG) signals based on machine learning technology. Recognizing emotions is a challenging task due to the non-linear property of the EEG signal. This paper presents an advanced signal processing method using the deep neural network (DNN) for emotion recognition based on EEG signals. The spectral and temporal components of the raw EEG signal are first retained in the 2D Spectrogram before the extraction of features. The pre-trained AlexNet model is used to extract the raw features from the 2D Spectrogram for each channel. To reduce the feature dimensionality, spatial, and temporal based, bag of deep features (BoDF) model is proposed. A series of vocabularies consisting of 10 cluster centers of each class is calculated using the k-means cluster algorithm. Lastly, the emotion of each subject is represented using the histogram of the vocabulary set collected from the raw-feature of a single channel. Features extracted from the proposed BoDF model have considerably smaller dimensions. The proposed model achieves better classification accuracy compared to the recently reported work when validated on SJTU SEED and DEAP data sets. For optimal classification performance, we use a support vector machine (SVM) and k-nearest neighbor (k-NN) to classify the extracted features for the different emotional states of the two data sets. The BoDF model achieves 93.8% accuracy in the SEED data set and 77.4% accuracy in the DEAP data set, which is more accurate compared to other state-of-the-art methods of human emotion recognition. - 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by Higher Education Commission (HEC): Tdf/67/2017.Scopu

    Resonator based switching technique between ultra wide band (Uwb) and single/dual continuously tunable-notch behaviors in uwb radar for wireless vital signs monitoring

    No full text
    This paper presents a novel resonator that can switch and create three important behaviors within the same antenna using miniaturized capacitors. The resonator was integrated into conventional Ultra-Wide Band (UWB) antenna to achieve UWB and Single/Dual continuously tunable-notch behaviors. The Single/Dual notched was continuously tuned to our desired frequency band by changing the value of the capacitors. The antenna designed and fabricated to validate these behaviors had a compact size of 24 ? 30.5 mm2, including the ground plane. The radiation patterns were very clean due to the placement of the proposed resonator in the special ground plane. Moreover, the presented novel resonator and switching technique was compared with the recently proposed resonators and their switching techniques. The prototype for the antenna was also developed in order to validate its performance in wireless vital signs monitoring. The presented miniaturized resonator based antenna was utilized for tumor sensing and simulations were provided in this regard. Moreover, the deployment of the proposed resonator based UWB antenna sensor in Pipeline Integrity Monitoring system was also investigated and discussed. ? 2018 by the authors. Licensee MDPI, Basel, Switzerland.Scopu

    Strain gradient based dynamic response analysis of heterogeneous cylindrical microshells with porosities under a moving load

    No full text
    Forced vibration of a porous functionally graded (FG) cylindrical microshell due to a moving point load with constant velocity is studied for the first time. Through the thickness of microshell, there are even-type or uneven-type porosities. Therefore, material properties of the microshell become porosity-dependent and are described via modified power-law function. For micro-scale shells, small size effects due to non-uniform strain field can be considered via strain gradient theory (SGT). At first, the governing equations of the microshell are converted to new equations in Laplace domain. Then, time response of the microshell will be obtained implementing inverse Laplace transform technique. It will be demonstrated that forced vibration characteristics of a FG microshell rely on the velocity of moving load, strain gradients, porosity percentage, material/porosity distribution and its geometry.Scopu

    Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection

    No full text
    Nonlinear free/forced vibration of a functionally graded graphene nanoplatelet (GNP) reinforced microbeam having geometrical imperfection which is rested on a non-linear elastic substrate have been studied in the present research. Graphene Platelets have been uniformly and non-uniformly scattered in the cross section area of the microbeam. Non-uniform distribution of GNPs is considered to be linear or non-linear type. Geometric imperfection is considered similar to the first vibration mode of microbeam. Size effects due to micro-rotations are captured in this study by means of modified couple stress elasticity. In the case of forced vibration, a uniform harmonic load is exerted to the top surface of microbeam. Harmonic balance method has been implemented to solve the non-linear governing equation of microbeam having quadratic and cubic nonlinearities. In this regard, frequency-amplitude curves are obtained and their trends are studied by changing of GNP amount and distribution, geometric imperfection, forced amplitude and hardening foundation. - 2019, Springer-Verlag GmbH Germany, part of Springer Nature.Scopu

    Dynamic response of functionally graded graphene nanoplatelet reinforced shells with porosity distributions under transverse dynamic loads

    No full text
    This article investigates forced vibrational characteristics of a porous nanocomposite shell reinforced by graphene platelets (GPLs) under radial dynamic loads. Material properties of the shell dependents on uniform and non-uniform distributions of GPLs and porosities. Description of the material properties of such nanocomposites accounting for porosity and GPL content is performed via Halpin-Tsai micromechanical rule. The dynamic equations of the nanocomposite shell are based on first order shell theory and a semi-analytical approach is implement to solve these equations and obtain dynamic deflections due to applied load. It is elucidated that GPL and porosity content can significantly affect the dynamic response of a nanocomposite shell. Actually, the resonance frequency of a nanocomposite shell can be increased by increasing the GPL percentage.Scopu

    A combined method to model dynamic recrystallization based on cellular automaton and a phenomenological (CAP) approach

    No full text
    Titanium alloys with high stacking-fault energy show continuous dynamic recrystallization (CDRX) instead of discontinuous dynamic recrystallization (DDRX) during high-temperature deformation. During the CDRX mechanism, new recrystallized grains are generated by the progressive increasing of the low-angle boundary misorientations. In the present work, the CDRX phenomenon was modeled by using a cellular automaton (CA)-based method. The size of seeds was determined based on a phenomenological approach, and then the number and distribution of recrystallized grains as well as the topological changes were applied by utilizing the CA approach. In order to verify the capacity of the proposed model for predicting the microstructural characteristics, the experimental data of the hot-compressed TiNiFe alloy were used. Results showed that the presented model can accurately estimate the fraction of the recrystallized area. Moreover, the macroscopic flow curves of the alloy were well predicted by the present model. � 2018 by the authors. Licensee MDPI, Basel, Switzerland.Scopu

    Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory

    No full text
    Based on nonlocal strain gradient theory (NSGT), transient behavior of a porous functionally graded (FG) nanoplate due to various impulse loads has been studied. The porous nanoplate has evenly and unevenly distributed pores inside its material structure. Impulse point loads are considered to be rectangular, triangular and sinusoidal types. These impulse loads lead to transient vibration of the nanoplate which is not studied before. NSGT introduces a nonlocal coefficient together with a strain gradient coefficient to characterize small size influences due to non-uniform stress and strain fields. Galerkin's approach has been performed to solve the governing equations and also inverse Laplace transform method is used to obtain transient response due to impulse loads. It is explained in this research that the transient response of a nanoplate is dependent on nonlocal coefficient, strain gradient parameter, pore dispersion, pore amount, type of impulse load and loading time.Scopu

    Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

    No full text
    The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.Scopu

    Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution

    No full text
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law form. - 2018 Taylor & Francis Group, LLC
    corecore